Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 184: 114423, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158035

RESUMO

The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles.


Assuntos
Líquidos Corporais , Poluentes Químicos da Água , Microplásticos , Intestinos , Polímeros , Digestão , Plásticos , Poluentes Químicos da Água/análise
2.
Environ Int ; 179: 108172, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37657408

RESUMO

Plastic particles are found almost ubiquitously in the environment and can get ingested orally by humans. We have used food-relevant microplastics (2 µm polylactic acid), submicroplastics (250 nm polylactic acid and 366 nm melamine formaldehyde resin) and nanoplastics (25 nm polymethylmethacrylate) to study material- and size-dependent uptake and transport across the human intestinal barrier and liver. Therefore, different Transwell™-based in vitro (co-)culture models were used: Differentiated Caco-2 cells mimicking the intestinal enterocyte monolayer, an M-cell model complementing the Caco-2 monoculture with antigen uptake-specialized cells, a mucus model complementing the barrier with an intestinal mucus layer, and an intestinal-liver co-culture combining differentiated Caco-2 cells with differentiated HepaRG cells. Using these complex barrier models, uptake and transport of particles were analyzed based on the fluorescence of the particles using confocal microscopy and a fluorescence-based quantification method. Additionally, the results were verified by Time-of-Flight - Secondary Ion Mass Spectrometry (ToF-SIMS) analysis. Furthermore, an effect screening at the mRNA level was done to investigate oxidative stress response, inflammation and changes to xenobiotic metabolism in intestinal and hepatic cells after exposure to plastic particles. Oxidative stress and inflammation were additionally analyzed using a flow-cytometric assay for reactive oxygen species and cytokine measurements. The results reveal a noteworthy uptake into and transport of microplastic and submicroplastic particles across the intestinal epithelium. Particularly, we show a pronounced uptake of particles into liver cells after crossing of the intestinal epithelium, using the intestinal-liver co-culture. The particles evoke some alterations in xenobiotic metabolism, but did not cause increased oxidative stress or inflammatory response on protein level. Taken together, these complex barrier models can be applied on micro-, submicro- and nanoplastics and reveal information in particle uptake, transport and cellular impact.


Assuntos
Microplásticos , Plásticos , Humanos , Microplásticos/toxicidade , Células CACO-2 , Xenobióticos , Fígado , Inflamação
3.
Toxicol In Vitro ; 80: 105314, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35033651

RESUMO

There is increasing evidence that humans are exposed to microplastic particles through contaminated food. Although suitable analytical methods are still lacking, it is likely that these contaminations also contain a nanoplastics fraction. It is known from nanotoxicology that particles may acquire altered toxicological properties with decreasing particle sizes. Particles can also have different surface modalities and functionalizations. Moreover, nano- and microplastics as materials with probably a relatively low toxicity are often applied at high concentrations in in vitro tests, and therefore the solvating agent, namely the dispersant in which the particles are supplied may have a major impact on the outcome. This might be misinterpreted as particle effect. Therefore, it is crucial to determine what causes the effect - size, surface or dispersant? In this study this question was investigated by applying established in vitro models for the intestinal barrier (differentiated Caco-2 monoculture and mucus- and M-cell co-culture) and hepatocytes (differentiated HepaRG cells), mimicking the oral route of particle uptake. A complex set of nine different polystyrene micro- and nanoparticles was used to elucidate the effect of particle size, surface modification and dispersant. Uptake and transport as well as biochemical endpoints were measured, complemented by particle characterization. The results show that indeed some dispersants can cause a more pronounced cytotoxic effect than the particles themselves. Surface modification and particle size show a clear influence on the uptake and cytotoxicity of nano- and microplastic particles.


Assuntos
Microplásticos/química , Microplásticos/toxicidade , Nanopartículas/química , Nanopartículas/toxicidade , Poliestirenos/química , Poliestirenos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais , Humanos , Lisossomos/metabolismo , Necrose/induzido quimicamente , Tamanho da Partícula , Propriedades de Superfície
4.
Part Fibre Toxicol ; 17(1): 45, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948196

RESUMO

Nanoparticles exhibit a specific diffusion and sedimentation behavior under cell culture conditions as used in nantoxicological in vitro testing. How a particular particle suspension behaves depends on the particular physicochemical characteristics of the particles and the cell culture system. Only a fraction of the nanoparticles applied to a cell culture will thus reach the cells within a given time frame. Therefore, dosimetric calculations are essential not only to determine the exact fraction of nanoparticles that has come into contact with the cells, but also to ensure experimental comparability and correct interpretation of results, respectively. Yet, the use of published dosimetry models is limited. Not the least because the correct application of these in silico tools usually requires bioinformatics knowledge, which often is perceived a hurdle. Moreover, not all models are freely available and accessible. In order to overcome this obstacle, we have now developed an easy-to-use interface for our recently published 3DSDD dosimetry model, called NanoPASS (NanoParticle Administration Sedimentation Simulator). The interface is freely available to all researchers. It will facilitate the use of in silico dosimetry in nanotoxicology and thus improve interpretation and comparability of in vitro results in the field.


Assuntos
Modelos Moleculares , Nanopartículas/toxicidade , Planejamento da Radioterapia Assistida por Computador , Técnicas de Cultura de Células , Simulação por Computador , Difusão , Humanos , Modelos Biológicos , Tamanho da Partícula , Propriedades de Superfície
5.
Nanoscale Adv ; 2(10): 4350-4367, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132901

RESUMO

The production and use of plastics has constantly increased over the last 30 years. Over one third of the plastics is used in disposables, which are discarded within three years of their production. Despite efforts towards recycling, a substantial volume of debris has accumulated in the environment and is slowly degraded to micro- and nanoplastics by weathering and aging. It has recently been discovered that these small particles can enter the food chain, as for example demonstrated by the detection of microplastic particles in honey, beer, salt, sea food and recently in mineral water. Human exposure has further been documented by the detection of plastic microparticles in human feces. Potential toxic consequences of oral exposure to small plastic particles are discussed. Due to lacking data concerning exposure, biodistribution and related effects, the risk assessment of micro- and nanoplastics is still not possible. This review focuses on the oral uptake of plastic and polymer micro- and nanoparticles. Oral exposure, particle fate, changes of particle properties during ingestion and gastrointestinal digestion, and uptake and transport at the intestinal epithelium are reviewed in detail. Moreover, the interaction with intestinal and liver cells and possibly resulting toxicity are highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...